Multiplicative order convergence in $f$-algebras
نویسندگان
چکیده
منابع مشابه
CONTINUITY IN FUNDAMENTAL LOCALLY MULTIPLICATIVE TOPOLOGICAL ALGEBRAS
Abstract. In this paper, we first derive specific results concerning the continuity and upper semi-continuity of the spectral radius and spectrum functions on fundamental locally multiplicative topological algebras. We continue our investigation by further determining the automatic continuity of linear mappings and homomorphisms in these algebras.
متن کاملMultiplicative Isometries on F-Algebras of Holomorphic Functions
and Applied Analysis 3 Now we recall definitions and some properties of the Smirnov class, the Privalov class, the Bergman-Privalov class, and the Zygmund F-algebra on Bn or D. The space of all holomorphic functions on X Bn or D is denoted by H X . For each 0 < p ≤ ∞, the Hardy space is denoted by H X with the norm ‖ · ‖p. 2.1. Smirnov Class N∗ X Let X ∈ {Bn, Dn}. The Nevanlinna class N X on X ...
متن کاملAlmost n-Multiplicative Maps between Frechet Algebras
For the Fr'{e}chet algebras $(A, (p_k))$ and $(B, (q_k))$ and $n in mathbb{N}$, $ngeq 2$, a linear map $T:A rightarrow B$ is called textit{almost $n$-multiplicative}, with respect to $(p_k)$ and $(q_k)$, if there exists $varepsilongeq 0$ such that$$q_k(Ta_1a_2cdots a_n-Ta_1Ta_2cdots Ta_n)leq varepsilon p_k(a_1) p_k(a_2)cdots p_k(a_n),$$for each $kin mathbb{N}$ and $a_1, a_2, ldots, a_nin A$. Th...
متن کاملMultiplicative Invariants and Semigroup Algebras
Let G be a finite group acting by automorphism on a lattice A, and hence on the group algebra S = k[A]. The algebra of G-invariants in S is called an algebra of multiplicative invariants. We present an explicit version of a result of Farkas stating that multiplicative invariants of finite reflection groups are semigroup algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2019
ISSN: 2651-477X
DOI: 10.15672/hujms.512073